Nonparametric identification assuming two noise sources: a deconvolution approach
نویسنده
چکیده
Nonparametric identification of linear systems is investigated in this paper. Nonparametric identification is the estimation of the time record of the impulse response of the system. It is a deconvolution problem, i.e., inverse operation of the convolution of the impulse response and the excitation signal. The problem is ill posed, i.e., deconvolution amplifies the measurement noise to a great extent. The noise has to be suppressed with the price of a bias in the estimate. A tradeoff has to be found between the noisy and biased estimates. Because of the need for repeatability and to reduce the subjectivity, the level of noise reduction has to be set algorithmically. This paper introduces a method that optimizes the parameter(s) of deconvolution filters and, thus, controls the level of noise reduction. The proposed method assumes observation noise sources for both the measurement of the excitation signal and the system output.
منابع مشابه
New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملAN-EUL method for automatic interpretation of potential field data in unexploded ordnances (UXO) detection
We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys based upon the concept of the structural index (SI) of a potential anomaly which is relate...
متن کاملOn pointwise adaptive nonparametric deconvolution
We consider estimating an unknown function f from indirect white noise observations with particular emphasis on the problem of nonparametric deconvolution. Non-parametric estimators that can adapt to unknown smoothness of f are developed. The adaptive estimators are speciied under two sets of assumptions on the kernel of the convolution transform. In particular, kernels having the Fourier trans...
متن کاملA Unified Approach to Solve Ill - Posed Inverse Problems in Econometrics
We consider the general issue of estimating a nonparametric function φ from the inverse problem r = Tφ given estimates of the function r and of the linear transform T . Two typical examples include the estimation of a probability density function from data contaminated by a noise whose distribution is unknown (blind deconvolution) and the nonparametric instrumental regression. We provide a unif...
متن کاملDeconvolution with Supersmooth Distributions
The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted Lp-loss (1 $ p $ 00). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Instrumentation and Measurement
دوره 47 شماره
صفحات -
تاریخ انتشار 1998